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Abstract

Glycosaminoglycans (GAGs) are heterogeneous acidic polysaccharides involved

in a range of biological functions. They have a significant influence on the reg-

ulation of cellular processes and the development of various diseases and infec-

tions. To fully understand the functional roles that GAGs play in mammalian

systems, including disease processes, it is essential to understand their structural

features. Despite having a linear structure and a repetitive disaccharide backbone,

their structural analysis is challenging and requires elaborate preparative and

analytical techniques. In particular, the extent to which GAGs are sulfated, as

well as variation in sulfate position across the entire oligosaccharide or on in-

dividual monosaccharides, represents a major obstacle. Here, we summarize the

current state‐of‐the‐art methodologies used for GAG sample preparation and

analysis, discussing in detail liquid chromatograpy and mass spectrometry‐based
approaches, including advanced ion activation methods, ion mobility separations

and infrared action spectroscopy of mass‐selected species.
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1 | INTRODUCTION

Cell to cell communication is an essential process for
multicellular organisms that facilitates their develop-
ment, organogenesis, organism homeostasis, and tissue
repair. The varied and abundant collection of poly-
saccharides and glycans on the surface of animal cells
participate in cell–cell and cell–matrix interactions and
also play a central role in mediating communication
between cells. An important family of polysaccharides
are glycosaminoglycans (GAGs), which are an essential
part of the extracellular matrix (ECM). GAGs provide the
ECM with the necessary flexiblity and elasticity to bring
about these important and complex networks of cellular
interaction (Mattson et al., 2016). GAGs coat the cell
surface through a covalent linkage to protein cores,

forming sulfated proteoglycans, including syndecans
(transmembrane), glypicans (GPI; glycosylpho-
sphatidylinositol anchored), and perlecan in the extra-
cellular matrix. Generally, each proteoglycan core can
carry between one and four polysaccharide chains
(Pomin & Mulloy, 2018). Among the different pro-
teoglycans expressed by mammals, serglycin, which is
usually build up from heparin (Hep) chains, is the
dominating species in granules of hematopoietic lineage
cells. Its structural and functional characteristics are very
dynamic and change depending on biological context
(Kolset & Pejler, 2011).

Within the ECM network, GAGs play important
roles as cellular sensors, transport regulators and re-
lay chemo‐mechanical signals from the ECM via
cell–matrix connections (Antonio & Iozzo, 2005;
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Ricard‐Blum, 2017) to maintain fundamental func-
tions in development (Dhoot et al., 2001; Hwang
et al., 2003), pathogenesis (Shukla et al., 1999), an-
ticoagulation (Casu et al., 2004; Shriver et al., 2000),
angiogenesis (Huang et al., 2014; Raman et al., 2011),
and metastasis (Sanderson, 2001).

The ECM is subject to a constant remodeling process
that controls homeostasis and cell development
(Theocharis et al., 2016). GAG length and the number of
chains attached to a single proteoglycan core differ de-
pending on tissue distribution. The sulfate patterns are
modified by sulfatases to generate new GAG structures
that can result in considerable changes in proteoglycan
properties, providing the flexibity required to react to
different biological needs (Frese et al., 2009; Hammond
et al., 2014). A good example is the extracellular hepar-
inase, which has been defined as a multitasking protein.
It catalyzes the side chain trimming of heparan sulfate
(HS) proteoglycans and contributes to the ECM re-
modeling process. However, in pathological conditions
like inflammation, tumor growth, or fibrosis, the enzyme
is overexpressed (Masola et al., 2018). Extracellular sul-
fatases, especially the 6‐O‐HS endosulfatase (Sulf) en-
zymes have regulatory functions in extracellular
signaling, in the control of tumor growth and angiogen-
esis. They can remove 6‐O‐sulfate groups from
nonreducing‐terminal GlcN residues of HS, and Hep
chains (Ai et al., 2005).

GAG complexity is further increased by the
nontemplate‐controlled biosynthesis and structural edit-
ing of GAG chains, which comprises several enzymes with
tissue‐specific isoforms (Sasarman et al., 2016; T. Carlsson
& Kjellén 2012; Carlsson et al., 2008; Chen et al., 2018;
Deligny et al., 2016; Filipek‐Górniok et al., 2013; Kreuger
& Kjellén, 2012; Uyama et al., 2007). Therefore, there is a

great need for competent and sensitive analytical methods
to characterize GAG structures, identify the broad range of
protein–GAG interactions and understand the corre-
sponding diversity of biological functions. Regardless of
the complexity of existing analyses, a single approach is
not sufficient to characterize the enormous structural di-
versity that is characteristic for GAGs. An integration of
all analysis data from various orthogonal methods such as
liquid chromatography (LC), mass spectrometry (MS), ion
mobility (IM), and infrared spectroscopy (IR) is usually
necessary.

2 | STRUCTURE OF
GLYCOSAMINOGLYCAN FAMILIES

The GAG family includes hyaluronic acid (HA), heparin
(Hep), HS, chondroitin sulfate (CS), dermatan sulfate
(DS), and keratan sulfate (KS) (Figure 1). HA is a non‐
sulfated polymer that consists of repeating β‐1,4‐D‐GlcA
and β‐1,3‐N‐GlcNAc units (Gupta et al., 2019). It has the
highest polymerization among all GAGs, thus the longest
chain of the GAG families (Larrañeta et al., 2018). HA
has high viscoelasticity, high water absorption, and high
biocompatibility, functioning as a lubricant in the ECM
and mechanical stabilizer (Kogan et al., 2008). It main-
tains the water balance as a flow resistance‐regulator
(Larrañeta et al., 2018).

Hep and HS are some of the most acidic biopolymers
found in nature (Jones, Beni, Limtiaco, et al., 2011). They
are composed of a characteristic repeat of β‐1,4‐uronic
acid (UA) and β‐1,4‐glucosamine (GlcN) units. The UA
residue can be either α‐L‐iduronic acid (IdoA) or β‐D‐
glucuronic acid (GlcA) and is unsubstituted or sulfated at
the 2‐O position. The GlcN residue can either be

FIGURE 1 Representation of the five
types of glycosaminoglycan structures.
Possible sulfation presence, location (2S, 3S,
4S, or 6S) and linkages are indicated. The
domain organization of Hep/HS is defined. S,
rich sulfated; S/NA, transition; NA,
N‐acetylated [Color figure can be viewed at
wileyonlinelibrary.com]
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unmodified (GlcN), N‐sulfated (GlcNS) or N‐acetylated
(GlcNAc) (Shriver et al., 2000, 2012). Variable patterns of
O‐sulfation can reside at the carbon 3‐O (Esko &
Lindahl, 2001; Li & Kusche‐Gullberg, 2016; Thacker
et al., 2014) and carbon 6‐O positions (Jones, Beni,
Limtiaco, et al., 2011; Wang et al., 2002). The hetero-
geneity of Hep results from variable sulfation patterns
and the presence of hexuronic acid epimers, which is
predominantly IdoA in Hep (Hagner‐McWirther
et al., 2000). In contrast to HS, Hep shows no domain
organization and has a higher number of sulfates (~2.7
per disaccharide) (Dulaney & Huang, 2012) groups. In
addition, Hep can be shorter than HS and has a poly-
disperse mixture of chains with different molecular
weights (Taylor et al., 2019). HS is around 50–200 dis-
accharide units in length and contains an overall lower
sulfation level of 1–2 sulfates per disaccharide, as well as
the UA group being predominately GlcA. HS has three
main regions, the N‐acetylated domains (NA), transition
domains with alternating N‐acetylated/N‐sulfated re-
sidues (NA/NS domains); and the fully N‐sulfated do-
mains (S domains) (Bame et al., 2000; Lyon &
Gallagher, 1998). These separate domains are thought to
be important for molecular function and also allow more
structural variation to improve specificity of interactions
with binding proteins.

CS chains are composed of alternating 1,4‐linked β‐D‐
GlcA and 1,3‐linked N‐acetyl galactosamine (GalNAc)
units (Lamari & Karamanos, 2006). Various subtypes of
CS exist, according to different sulfation patterns. CS‐A is
predominantly 4‐sulfated on GalNAc residues (Hang
Wang et al., 2008), and CS‐C is mostly 6‐sulfated on
GalNAc (Nakano et al., 2010). CS‐B is also called der-
matan sulfate (DS) and has 2‐sulfated α‐L‐IdoA units
rather than β‐D‐GlcA. DS GalNAc units are pre-
dominantly 4‐sulfated (Trowbridge & Gallo, 2002).

Keratan sulfate (KS) is composed of alternating
3‐linked β‐D‐Gal and 4‐linked β‐D‐GlcNAc units
(Caterson & Melrose, 2018). It is the only GAG, which is
not composed of UA. KS disaccharides can both be
6‐sulfated, although sulfation at GlcNAc occurs more
often (Funderburgh, 2002). These separate GAG familes
are thought to be important for molecular functions and
also allow more structural variation to improve specifi-
city of interactions among binding proteins.

In general, GAG chains vary considerably and this
structural heterogeneity is due in large part to extensive
sulfation. The occurrence of GAGs in the ECM and at
cell surfaces contribute to multiple biomedical processes,
interactions with extracellular proteins and various pa-
thophysiological events. The high structural diversity
characteristic of GAGs and diverse biological functions
is a result of their complex, nontemplate‐driven

biosynthesis that has been described in detail elsewhere
(Bishop et al., 2007; Sarrazin et al., 2011; Soares da Costa
et al., 2017). Therefore, these aspects are not specifically
addressed here.

3 | FUNCTIONS OF
GLYCOSAMINOGLYCANS

Biological functions mediated by GAGs are done so
through several structural properties such as composi-
tion, molecular weight, the type of glycosidic linkage,
sulfation, and carboxylation. The protein core sequence
mainly determines the location and the number of GAGs
(cell membrane, secreted, or in ECM), while proteogly-
can interactions with other molecules are largely medi-
ated by GAGs. Sulfated GAGs are usually responsible for
extracellular signaling and protein interactions, includ-
ing cell and tissue development. The main drivers of
these functions are electrostatic interactions, which reg-
ulate protein folding and recruitment or exclusion of
other biomolecules (Gandhi & Mancera, 2008; Kjellén &
Lindahl, 2018). Apart from GAG‐dependent interactions,
proteoglycans have a large number of different structural
protein modules within their respective protein cores
which mediate a variety of additional binding interac-
tions (Iozzo & Schaefer, 2015). For example, the α‐
granule proteoglycan serglycin fullfils many functions in
cargo packaging, cargo release, the decondensation and
swelling of α‐granules, receptor shedding and platelet
activation (Chanzu et al., 2021; Kolset & Pejler, 2011).

Sulfation patterns have a strong influence on nu-
merous aspects of cellular interactions (Hiroko Habuchi
et al., 2004) and different disorders are linked to changes
in the sulfation pattern (Soares da Costa et al., 2017).
Various receptors are immobilized on the cell surface by
GAGs and actively restrict the movement of bound pro-
teins to one‐dimension in three‐dimensional space to
create protein gradients next to the site of secretion and
form a protective barrier around them (Clark et al., 2013;
Wei et al., 2020). The ionic interactions between the
carboxyl‑ and sulfate groups from GAGs and amino acid
residues of neighboring proteins contribute to the
formation of GAG‑protein complexes (Smock &
Meijers, 2018; Vallet et al., 2020). These multivalent in-
teractions contribute to the protection of proteins from
degradation or conformational change, modulate activa-
tion or deactivation of proteins, and mediate the creation
of GAG–protein clusters at the cell surface (Ziegler &
Seelig, 2008).

Arguably, the most prominent example of a GAG‐
protein interaction is the anticoagulant activity of Hep
(Gray et al., 2012). The function of Hep as an anticoagulant
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is based on its interaction with the protein antith-
rombin (AT‐III), an inhibitor of thrombin (Li
et al., 2004). The binding of a specific pentasaccharide
within Hep to AT‐III causes its allosteric activation
and induces a change of the AT‐III conformation
which results in the stimulation of Factor IXa and in-
hibition of Factor Xa (Atha et al., 1985; Casu &
Lindahl, 2001; Goldsmith & Mottonen, 1994; Hofmeister
et al., 1991; Lindahl et al., 1980, 1983; Olson, 2002; Petitou
et al., 2003; Riesenfeld et al., 1981).

Additionally, GAGs regulate the function and plasti-
city of synapses by mediating the adaption of neurons to
changing environments (Saied‐Santiago & Bülow, 2018).
CS is the most abundant GAG in the central nervous
system and contributes to brain and spinal cord devel-
opment (Djerbal et al., 2017). HS and CS bound to pro-
teoglycans (PGs) maintain the state of the central
nervous system by regulating and changing synapse in-
teractions (Mencio et al., 2020; Rhodes & Fawcett, 2004).
The absence of these GAGs is associated with diseases
like Alzheimer's (DeWitt et al., 1993), epilepsy (Yutsudo
& Kitagawa, 2015), and schizophrenia (Pantazopoulos
et al., 2015).

CSPGs, KSPGs, and DSPGs, are the main components
of the cartilage ECM and function in the generation of
osmotic pressure to withstand compressive loads and the
activation of chondrocytes by specific interactions with
growth factor proteins (Gao et al., 2014; Horkay, 2012).

4 | LABORATORY METHODS FOR
GLYCOSAMINOGLYCAN
PREPARATION

A general workflow of GAG isolation from tissues in-
cludes several purification steps, followed by depoly-
merization into oligo‐ or disaccharides and subsequent
analysis. In the following section, details on the methods
required for GAG extraction and analysis are described.

4.1 | Extraction methods

Hep was the first GAG to be extracted. This is in large
part due to being identified to have anticoagulant activity
and therefore considerable thereapeutic potential. As a
result of the successful pharmaceutical application as an
anticoagulant, extraction methods for Hep have been
continuously developed for nearly a century. In 1933
Charles and Scott isolated and purified Hep using an
alkaline method following ethanol precipation, protease
digestion and a second ethanol precipation (Charles &
Scott, 1936). Acetone extraction was introduced, followed

by protein digestion and further acetone precipation
(Freeman et al. 1957). Phase extraction methods utilising
chloroform‐methanol, followed by protein digestion
(trypsin and papain), alkaline treatment, acetone pre-
cipation, anion exchange chromatography and ethanol
precipation were established (Volpi, 1999). Most recently,
phenol, guanidine, and chloroform were used for GAG
extraction followed by weak anion exchange and enzy-
matic digestion to remove proteins, DNA, RNA, and
glycans. Subsequently, GAGs were purified using a final
step of weak anion exchange chromatography (Guimond
et al., 2009).

These methods involve the extraction of lipids and
membrane components using organic solvents and the re-
moval of the PG from the GAG chain either using alkaline
buffers to induce β‐elimination of the GAG chains or pro-
teolytic digestion of the protein. Removal of existing proteins,
peptides, DNA, RNA, and small molecules was performed
either by precipation with organic solvents and salts or anion
exchange chromatography. All GAG families have applied a
combination of these extraction methods. Hep can be frac-
tionated by its high charge, however, HS, CS, DS, and KS are
isolated individually through enzymatic digestion of the
GAG chains.

4.2 | Depolymerization methods

GAG chains are long polymers and therefore too complex
and heterogenous to be analysed in their intact form that
derives meaningful structural information. However, the
bioactive motifs within the GAG chain usually range
from a few disaccharides to dodecamers (Townley &
Bülow, 2018). Therefore, chemical‐ or enzymatic diges-
tion of the intact GAG chain into smaller oligosacchar-
ides provides a useful approach to study biologically
relevant structures and activity relationships on targeted
sections of the GAG.

Hep is clinically used as an anticoagulant. As a full‐
length chain, it has greater ability to bind a larger
number of protein complexes, which might potentially
lead to unintended side effects. For clinical applications,
Hep is usually chemically or enzymatically cleaved into
low molecular weight heparins (LMWHs), which pro-
vides fewer side effects, as a result of having few protein
interactions (Frydman, 1996). All currently established
methods to depolymerize Hep are shown in Figure 2. The
LMWH enoxaparin is generated by the depolymerization
of Hep by esterification with benzyl chloride and alkaline
hydrolysis, whereas tinzaparin is generated by enzymatic
digestion. The LMWHs dalteparin and reviparin are
generated by partial nitrous acid depolymerization of
Hep (Baytas & Linhardt, 2020).
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4.2.1 | Enzymatic digestion

Many GAG degrading enzymes have been identified and
are either endo‐ or exo‐lytic lyases or hydrolases (Ernst
et al. 1995). Lyases cleave by an eliminative mechanism
to produce a 4,5‐unsaturated uronic acid at the non-
reducing chain terminus (Linhardt et al., 2006;
Maruyama et al., 2009). Hydrolases cleave by adding
water equivalents to glycosidic bonds creating saturated
cleavage products (Davies & Henrissat, 1995; Maruyama
et al., 2009). In this article the focus is set on lyases which
create unsaturated uronic acid and therefore enable UV
detection of generated products.

As all mammal organisms turnover GAG chains and
edit them based on cellular requirements, bacteria have
numerous GAG‐degrading enzymes which they utilise in
pathogensis. Enzymatic depolymerization is often used
in disaccharide analysis methods, for example, for
quantification of disaccharide units between tissues
providing important data on the natural variation of the
GAG structure (Alonge et al., 2019; Kuiper &
Sharma, 2015; Li et al., 2017; Saad & Leary, 2003, 2005;
Song et al., 2020; Turiák et al., 2018). The possibility to
analyze GAG structure variations has led to comparisons
by compositional analyzes of different GAG chains from
different organs in different species, and disease states
(Saad & Leary, 2003; Skidmore et al., 2010; Wei
et al., 2011; Zaia & Costello, 2001).

Enzymatic degradation of GAG chains using bacterial
lyases results in a 4, 5‐unsaturated double bond on the
uronosyl residue, a chromophore that absorbs at a

wavelength of 232 nm (Linhardt, 2001). Hep and HS can
be depolymerized from polysaccharides into dis-
accharides using heparinases I, II, and III (Lohse &
Linhardt, 1992; Wu et al., 2014). Heparinase I cleaves the
polymer chain between GlcNS(±6S)α1‐4IdoA(2S). He-
parinase II is less specific and has a broad range of ac-
tivity, it cleaves the GAG chain between GlcN residues
which can be N‐sulfated or N‐acetylated and 2‐O‐sulfated
IdoA, unsubstituted IdoA or GlcA (GlcNR(±6S)α1‐
4GlcA/IdoA). Heparinase III cleaves at sites between
GlcNac or GlcNS and IdoA, which can be either 2‐O‐
sulfated, unsubstitued or GlcA (Desai et al., 1993; Wei
et al., 2005).

The enzymatic depolymerization of CS/DS is made
possible by various chondroitinases (CSases), yielding di‐
and small oligosaccharides (Hettiaratchi et al., 2020;
Kasinathan et al., 2016; Yamagata et al., 1968). These
include CSase ABC I, CSase ABC II, CSase AC, and
CSase B. The chondroitinase family of enzymes is named
following the type of chondroitin sulfate chain it can
digest. Therefore, chondroitinase A is able to degrade CS‐
A (GlcA (β1‐3)‐GalNAc4S), whereas chondroitinase C
digests CS‐C (GlcA (β1‐3)‐GalNAc6S) and chondroitinase
B digests DS (IdoA (β1‐3)‐GalNAc4S).

HA can also be depolymerized by bacterial lyases;
Streptococcus pneumoniae hyaluronate lyase is a bacterial
enzyme which specifically cleaves the β‐(1→4) linkage in
HA and CS. It belongs to the family of β‐endoglycosidases
and functions by β‐elimination with introduction of an
unsaturated bond (Jedrzejas et al., 2002; Li et al., 2000).
The mammalian hyaluronidase is a hydrolase enzyme that

FIGURE 2 Depolymerization methods of Hep to produce low molecular weight heparins. The centered Hep chain can be
depolymerized by deaminative degradation or by chemical/enzymatical β‐elimination
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can digest HA and CS (Bilong et al., 2021; Kaneiwa
et al., 2010).

4.2.2 | Chemical depolymerization of GAGs

Chemical depolymerization methods of GAGs are very
versatile and can mainly occur by two principles:
β‐elimination and reductive deamination. The process of
β‐elimination mimics the bacterial lyase depolymeriza-
tion through a chemical two‐step reaction, which in-
troduces a double bond at the nonreducing ends of each
cleaved GAG fragment. The carboxylate group on the C5
carbon of the nonreducing end is benzylated with benzyl
chloride. During the reaction, the proton at the C5 po-
sition on the nonreducing end is abstracted by a strong
base, a double bond between C4 and C5 is formed and
the glycosidic bond is cleaved. After this reaction step,
the benzyl ester is eliminated through basic hydrolysis
(Jones, Beni, Limtiaco, et al., 2011).

Reductive deamination at GlcNS residues is achieved
by using nitrous acid or isoamyl nitrite. The deamination
process results in an unstable nitrososulfamide, which
immediately loses nitrogen and sulfate. A carbocation at
the C‑2 position of the saccharide is generated
(Conrad 2001). The depolymerization by reductive dea-
mination alters the GlcN structure by producing 2,5‐
anhydro‐D‐mannose residues at the reducing ends of the
fragment (Shively & Conrad, 1976). Deamination with
nitrous acid keeps the original GlcA/IdoA unaffected.
There is no loss of information regarding the stereo-
chemistry of the hexuronic acid. However, information
about N‐sulfation and N‐acetylation is lost. The process
of deamination can be controlled by adjusting the pH,
reaction temperature, and duration (Bienkowski &
Conrad, 1985).

Enzymatic and chemical depolymerization reactions
both produce similar oligosaccharide products. At com-
pletion, heparinase I and III produce oligosaccharide
mixtures whereas heparinase II produces disaccharides.
These enzymes have also been identified to digest che-
mically modified Hep and HS at a reduced efficiency
(Shriver et al., 1998). Hep cleavage by chemical processes
can degrade GAGs into oligosaccharides by time inhibi-
tion of the reaction. Otherwise the GAG chain is digested
to the smallest GAG unit. Most relevant bioactive motifs
range from tetra‐ to deca‐saccharides (Miller et al., 2020),
but also binding interactions with trisaccharides have
been demonstrated. A trisaccharide motif in HS con-
taining 2‐O‐sulfated IdoA and 6‐O‐desulfated GlcN was
found to bind to fibroblast growth factor 1 (FGF‐1), and a
hexasaccharide from HS with a single 2‐O‐sulfated IdoA
binds to FGF‐2 (Kreuger et al. 2001). A pentasaccharide

sequence with 2‐O‐sulfated IdoA and 6‐O‐desulfated
GlcN from Hep also strongly binds FGF‐2 thereby en-
hancing the binding affinity to FGF receptors
(Maccarana et al., 1994; Miller et al., 2014).

4.3 | UV‐ and fluorescent‐labeling

Depolymerization of GAGs by bacterial lyases or
β‐elimination leads to the formation of unsaturated
pyranose rings, which absorb at 232 nm and can there-
fore be detected with common UV detectors such as
those coupled to HPLC systems (Alkrad et al., 2003;
Chandarajoti et al., 2016). Other strategies are fluor-
escent labeling of GAGs with fluorophores, which can be
excited and detected at specific wavelengths with a
fluorescence detector. The fluorophores 2‐aminoacridone
(AMAC) (Chang et al., 2012; Kitagawa et al., 1995),
procainamide (ProA) (Antia et al., 2018) and Bodipy‐FL‐
hydrazide (Skidmore et al., 2010) are suitable for GAG
analysis. The derivatization takes place selectively and
exclusively at the reducing end with the formation of a
Schiff base. Labelling with fluorophores has enabled fmol
sensitivity and detection of subtle changes in GAG dis-
accharides among biological samples.

4.4 | Production of glycosaminoglycan‐
derived standards

The identification and quantification of biological GAG
samples requires the availability of GAG standards with
known concentrations. GAG standards and unknown
samples can be separated by HPLC enabling the GAG
type and its modifications to be assigned based on the
comparison with specific retention times of known
standard. Comparisons of peak areas can then be used
for quantification. In most of the cases, Hep is used as
basis for the production and preparation of standards. It
is purified from pig intestines and di‐ and oligosacchar-
ides are generated from the precursor material (Lee
et al., 2020). The preparation of GAG chains into oligo-
saccharides and disaccharides can be carried out chemo‐
enzymatically or via chemical synthesis (Yates
et al., 1996). Generated cleavage products can be che-
mically modified, which significantly increases the yield
of disaccharides with a defined chemical structure and
defined modification. For example, the disaccharide
UA2S‐GlcNS6S, which is often found in Hep (Nagamine
et al., 2012), enables the production of various sulfated
disaccharides by chemical cleavage of sulfate groups.

In general, GAG standards can be produced using
various mechanisms. One approach follows the purely
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chemical synthesis of the sugar building blocks based on
repetitive steps of protection, activation, coupling, and
deprotection. There are several modular approaches for
the synthesis of HS oligosaccharides, each of which
makes use of selectively protected disaccharide building
blocks and corresponding glycosyl donors. The principle
outcome was that di‐ and oligosaccharide libraries were
created with which both structural and biological studies
on the inhibition of BACE‐1 protease (Arungundram
et al., 2009) and substrate specificities of the sulfate sul-
fotransferase 3‐OST3a (Nguyen et al., 2012) were ex-
amined. In addition, several selectively protected
tetrasaccharides with regioselective O‐ and N‐sulfation
and desulfation were assembled and used to prepare a
library of 47 HS oligosaccharides and to construct a HS
microarray. The generated tetrasaccharides included
12 differently sulfated derivatives (Zong et al., 2017). The
chemical synthesis of HS fragments was greatly simpli-
fied by the introduction of aminopentyl linkers protected
by benzyloxycarbonyl groups. The linker was modified
by a perfluorodecyl tag, which enabled the purification of
highly polar intermediates by fluorous solid phase ex-
traction (Zong et al., 2013). Additionally, GlcA donors
were found to give high yields of coupling products after
protection of the C‐2 hydroxyl group with a 4‐acetoxy‐
2,2‐dimethyl butanoyl‐ or levulinoyl ester and the
C‐4 hydroxyl modified with a selectively removable
2‐methylnaphthyl ether (Dhamale et al., 2014). In an-
other approach GlcN residues were modified by different
patterns of N‐acetyl and N‐sulfate moieties using azido‐
or trifluoromethylphenyl‐methanimine‐modified glyco-
syl donors. Together with the orthogonal hydroxyl pro-
tecting groups levulinic ester, thexyldimethylsilyl ether,
allyloxycarbonate, and 9‐fluorenylmethyl carbonate, dif-
ferent O‐sulfation modification patterns were con-
structed (Sun et al., 2020). Recently, a modular synthetic
approach providing structurally diverse HS oligo-
saccharides with and without 3‐OS was carried out. With
this approach 27 hexasaccharides were used to create a
glycan microarray used to examine binding affinities of
HS‐binding proteins (Chopra et al., 2021).

Recent advances in synthesis include chemical deri-
vatization methods with enzyme‐catalyzed reactions for
the assembly of di‐ or oligosaccharides (Wang et al., 2021;
Zhang et al., 2017). With the enzymatic component of
synthesis glycosylation, epimerase, and sulfation reac-
tions with high stereo‐ and regio‐selectivity can be per-
formed without the need for repetitive protection and
deprotection steps resulting in bioactive GAG chains
(Wang et al., 2021; Xu et al., 2012). In comparison to
chemical synthesis, chemo‐enzymatic methods provide
exceptional regioselectivity, shorten the required reaction
time and result in significantly higher product yields

(Chappell & Liu, 2013). However, the chemoenzymatic
workflow requires deep understanding of enzyme spe-
cificity as well as the application of chemically synthe-
sized donors and acceptors to perform target‐based
synthesis of GAG chains (Dickinson et al., 2014). Che-
moenzymatic synthesis employs enzyme catalysts and
different precursor structures, for example, uridine 5′‐
diphosphosphate‐sugar donors, sulfate donors, accep-
tors, and oxazoline precursors and it is generally divided
into two different approaches. The semisynthetic ap-
proach uses naturally occurring polysaccharides and
therefore, the control over polymer size and composi-
tion is lost. The second approach employs synthases and
UDP‐sugars and the GAG chain synthesis reaction is
carried out in either step‐wise elongation or in a syn-
chronized polymerization reaction both resulting in
more defined products with narrow size distributions
(DeAngelis et al., 2013).

For the chemoenzymatic synthesis of poly‐ and oligo‐
saccharides the HS polymerase catalyzes the synthesis of
the disaccharide backbone consisting of repeating units
of GlcA and GlcNAc. More modifications are performed
by the sulfotransferases and epimerases N‐deacetylase,
N‐sulfotransferase, C5‐epimerase, 2‐O‐sulfotransferase,
6‐O‐sulfotransferase, and 3‐O‐sulfotransferase (Xu
et al., 2011). The HS backbone was also chemically syn-
thesized and further modified by enzymatical approaches
employing N‐ and O‐sulfotransferases and the C5‐
epimerase resulting in oligosaccharides with different
sulfation and epimerization patterns (Lu et al., 2018).
Subsequently, oligosaccharides can be regioselectively
functionalized by azido acids offering highly reactive
intermediate structures (Zhang et al., 2020). Additionally,
fluorous tags facilitate their purification. A series of N‐
and O‐sulfated HS oligosaccharides were successfully
synthesized and purified employing this technique (Cai
et al., 2014). Additionally, the synthesis of a biotinylated
heparosan hexasaccharide was improved by modifying
the Hep backbone with a N‐trifluoroacetylglucosamine
residue during a one‐pot multienzyme strategy (Wu
et al., 2015). Targeted chemo‐enzymatic synthesis of HS
oligosaccharides was performed employing the HS 6‐O‐
sulfotransferase (Yi et al., 2020), HS 3‐O‐sulfotransferase
(Dhurandhare et al., 2020) and 2‐O‐sulfotransferase
(Hsieh et al., 2014) which transfer sulfates to the corre-
sponding hydroxyl group position. This type of synthesis
is carried out to generate HS di‐, tetra‐, and hexa‐
saccharide standards with defined biological activities.
The 6‐O‐sulfotransferase has been additionally en-
gineered to achieve fine control of the 6‐O‐sulfation (Yi
et al., 2020).

Usually, cleaved disaccharides are first purified by
size exclusion chromatography (SEC) and then separated
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with strong anion exchangers (Liu et al., 2019; Victor
et al., 2009; Ziegler & Zaia, 2006). Subsequently, several
sample preparation and fractionation steps are required
(Powell et al., 2010). The purification steps of Hep from
raw mucosal material results in waste by‐products that
are less sulfated and show less biological activity. The
purified by‐products are an economical source of struc-
turally similar Hep and HS polysaccharides and enable a
cheaper production of disaccharide standards (Taylor
et al., 2019). Quantification of unknown samples must be
carried out under consideration of different commercial
enzymes, which were used for the production of dis-
accharide standards. The yield of enzymatically produced
standards varies and depends on enzyme activity. For
this reason, multiple analyses should always be carried
out using enzymes from the same supplier.

5 | LIQUID CHROMATOGRAPHIC
SEPARATION OF
GLYCOSAMINOGLYCANS

LC is one of the most suitable methods for the isolation
of GAG oligosaccharides. Often SEC is used after GAG
depolymerization to separate oligosaccharide products of
varying chain length. To achieve greater level of purity,
weak and strong anion‐exchange (SAX), reversed‐phase
(RP) and ion pairing (RP‐IP) chromatography, porous

graphitized carbon (PGC) and hydrophilic interaction
chromatography (HILIC) have proven to be valuable
(Figure 3).

5.1 | Size‐exclusion chromatography

SEC is a chromatographic method in which macro-
molecules are separated based on their hydrodynamic
volume and is characteristically robust, reproducible and
universally practical across laboratories (Liu, 2015). Hy-
drodynamic volume is a measure of size for a given
molecule and, at a constant density, also molecular
weight. SEC depends on the ability of molecules to enter
the pores of the stationary phase. The most important
parameter is the molecular size of the analytes; small
analytes can access pores more readily than large ana-
lytes. Therefore, larger molecules move faster through
the column. Analytes are eluted in the order of de-
creasing molecular size. Further unwanted retention may
arise from electrostatic interactions with the stationary
phase, which can be minimized by using mobile phases
with high ionic strength (Brusotti et al. 2018). The col-
umn characteristics must be considered carefully in
terms of sample capacity, resolution, and separation ef-
fectivity. Large columns are more suitable for high‐
resolution separations and characterization of small
sample qantities (Harrowing & Chaudhuri, 2003). There

FIGURE 3 Overview of suitable chromatography methods for GAG purification or analysis. (A) Size exclusion chromatography,
(B) reversed‐phase chromatography, (C) reversed‐phase chromatography with ion pairing, (D) strong anion exchange chromatography,
(E) hydrophilic interaction chromatography, and (F) porous graphitic carbon chromatography [Color figure can be viewed at
wileyonlinelibrary.com]
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are various size exclusion experiments in which depoly-
merized Hep was separated and fractionated according to
the size of its fragments (Chuang et al., 2001; Rice
et al., 1985; Wang et al., 2012; Zhang et al., 2013; Ziegler
& Zaia, 2006). Minimizing sample complexity via se-
paration of a long GAG chain is crucial for further
characterization of the sulfation level or isomerization.

5.2 | Anion‐exchange chromatography

GAGs are negatively charged polysaccharides and therefore
highly suitable to be separated using anion exchange
techniques, as shown previously for intact GAG chains as
well as chemically or enzymatically depolymerized oligo‐
and disaccharides (Linhardt, Rice, Kim, Engelken,
et al., 1988; Linhardt, Rice, Kim, Lohse, et al., 1988; Pervin
et al., 1995; Shastri et al., 2013). Strong anion exchange
(SAX) is the approved method for FDA‐approved quality
control of pharmeutical Hep (Beni et al., 2011; Guerrini
et al., 2009; Jones, Beni, Limtiaco, et al., 2011; Keire
et al., 2010, 2011; Ye et al., 2013). Anion exchange chro-
matography separates analytes according to charge, with
the stationary phase containing many positively–charged
functional groups, such as diethylaminoethyl (DEAE)
groups for weak anion exchange or a quarternary amines
for strong anion exchange. The analyte of interest is re-
tained under low ionic conditions, where a molecule of
higher ionic strength displaces the anionic counter ions
(typically chloride or phosphate). The elution of the mole-
cules is achieved by increasing the ionic strength of the
elution buffer over a gradient until displacement of
the analyte occurs. The major limitation of SAX is that the
number of negative charges (sulfates/carboxylates) on dif-
ferent sugar structures may be identical, in which case
these structures elute simultaneously. For small saccharides
(e.g., disaccharides), there is a significant degree of se-
paration based on the presence of 2OS, 6OS, and NS
groups, but as the oligosaccharide becomes longer this re-
solution decreases. DEAE is often applied to full length
GAG chains, whereas strong anion exchange (SAX) is ap-
plied to oligosaccharides ranging from 2 to 20 mono-
saccharide units (Chuang et al., 2001; Rice et al., 1985). The
majority of anion exchange columns used for GAGs are
commerically available. However, there are also non-
commercial columns that have been developed as a result
of the complexicity of GAGs to achieve pure oligosacchar-
ides (Miller et al., 2016; Mourier & Viskov, 2004; Mourier
et al., 2015). Alternatives to conventional SAX columns
are C8 or C18 columns derivatized with cetyl-
trimethylammonium salts (CTA‐SAX). This derivatization
results in a SAX stationary phase with different amounts of
coating, which allows for the separation of isomeric

structures that cannot be separated using commerical col-
umns (Miller et al., 2016; Mourier & Viskov, 2004; Mourier
et al., 2015). A combination of offline MS‐compatible SEC,
SAX and CTA‐SAX can isolate pure structures, using vo-
latile buffers to minimize sample loss (Miller et al., 2016).
The CTA‐SAX columns provide excellent resolution for
oligosaccharides purified from other methods such as SEC
or conventional SAX. However, these are based on a C18 or
C8 matrix which can also interact with proteins and tagged
GAG structures. Conventional SAX columns on the other
hand are made from silica beads and are suitable for
fluorescent labels and enzymes from GAG digestion pro-
tocols (Guimond et al., 2009; Kitagawa et al., 1995;
Skidmore et al., 2006, 2009; Yamada et al., 2007).

5.3 | Reversed‐phase ion pairing
chromatography

Reversed‐phase stationary phases are covalently bound
alkyl‐ or aromatic ligands which provide a hydrophobic
column surface. The solutes are usually dissolved in polar
mobile phases and interact with the stationary phase ac-
cording to their hydrophobicity. The elution is performed
by decreasing the polarity of the mobile phase using or-
ganic solvents (Žuvela et al., 2019). Reversed‐phase ion
pairing (RP‐IP) chromatography is performed on di‐ and
oligosaccharides as full‐length GAG chains, when com-
plexed with an ion pairing reagent, are either retained on
the stationary phase or are not sufficiently resolved (Jones,
Beni, & Larive, 2011; Karamanos et al., 1997; Li et al.,
2014b; Thanawiroon & Linhardt, 2003; Thanawiroon
et al., 2004; Toyoda et al., 1999).

Understanding the mechanism of reversed‐phase ion
pairing for GAG separation revolves around two theories: (1)
the negative charge of the sulfate group interacting with the
amine on the ion pairing reagent and a neutral structure
interacting with the stationary phase and (2) the ion pairing
reagent coating the stationary phase and the negative sulfate
of the oligosaccharide binding to the amine group within the
ion pairing reagent in an anion exchange chromatography
manner. None of the theories have yet to be proven un-
ambiguously and in reality it may well be a combination of
both (Jones, Beni, & Larive, 2011; Karamanos et al., 1997).
RP‐IP chromatography provides high resolution separation
for di‐ and oligosaccharides and complete separation of dis-
accharides for HS and Hep has been achieved (Galeotti &
Volpi, 2013; Jones, Beni, Limtiaco, et al., 2011; Karamanos
et al., 1997; Korir et al., 2008; Toyoda et al., 1999; Vongchan
et al., 2005; Xu et al., 2015). In addition, RP‐IP is compatible
with LC‐MS, albeit with the challenge that each sulfate
groups on the GAG oligosaccharide can complex with an ion
pairing reagent, so a minimum number of complexed sulfate
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or carboxylate groups would be one and the maximum
number would be all sulfate and carboxylates in the sac-
charide are complexed with an ion pairing reagent (Doneanu
et al., 2009; Henriksen et al., 2006; Langeslay et al., 2013; Li
et al., 2014a; Thanawiroon et al., 2004). RP‐IP chromato-
graphy also suffers from signal suppression during electro-
spray ionization (ESI) as a result of the ion pairing reagent
(Doneanu et al., 2009). Despite this perceived shortcoming,
the resolution and LC‐MS compability makes RP‐IP an ex-
cellent method within the GAG toolbox. RP‐IP chromato-
graphy with each disaccharide coupled to a tag is the most
common method for off‐line and on‐line analysis.

5.4 | Hydrophilic interaction
chromatography

HILIC is a chromatographic method that uses stationary
phases consisting of bare silica, zwitterionic functional
groups, for example, sulfobetaines or amide‐groups. For
HILIC, aprotic organic mobile phases are used, which
contain at least 2% water and forms a water‐enriched
layer immobilized at the surface of the stationary phase.
The separation mechanism is based on a distribution of
the analyte molecules between the water layer and the
mobile phase. Therefore, predominantly polar analytes
are retained in the water‐enriched layer at the stationary
phase and are eluted after increasing the aqueous buffer
content in the mobile phase (Alpert 1990; Buszewski &
Noga, 2012). HILIC can be directly coupled to MS due to
the high organic content in the mobile phase which
supports efficient evaporation, thereby increasing sensi-
tivity and minimizing ion suppression (Dreyfuss
et al., 2011; Hitchcock et al., 2008; Naimy et al., 2008;
Naimy et al., 2010; Shi & Zaia, 2009; Staples et al., 2009).
Additionally, HILIC‐MS is highly sensitive and routinely
used for the analysis of GAG disaccharides (Antia
et al., 2018; Gill et al., 2013; Tóth et al., 2020) and GAG
oligosaccharides (Li, Zhang, et al., 2012; Liu et al., 2019;
Wu et al., 2019). As a final point, the use of stationary
phases with sub‐2micron particles has further increased
the resolution and speed of GAG analysis (Ouyang
et al., 2016).

5.5 | Porous graphitic carbon
chromatography

PGC chromatography has the benefit of combining high
resolution and enhanced stability against extreme pH
and many physicochemical conditions. The retention
mechanism is based on a combination of the polariz-
ability and high binding capacity of the stationary phase.

It depends on interactions between polar moieties of the
solutes and the induced dipoles at the planar surface of
the PGC phase and is responsible for the increased re-
tention for polar compounds. The retention of oligo-
saccharides increases with the acidity and the molecular
weight of the analyte. Therefore, PGC is sensitive to
small differences in the electron distribution of the ana-
lytes, which explains the high selectivity observed in the
separation of isomers (Bapiro et al., 2016; Pereira, 2008).
PGC chromatography of highly sulfated oligosaccharides
has to be carried out very carefully because very strong
retention and even irreversible binding to the stationary
phase is possible. However, it was demonstrated that
protonated tetrasaccharides up to decasaccharides can be
successfully eluted from commercial PGC columns
(Miller et al. 2017). Highly sulfated GAGs larger than
decasaccharides in buffers compatible for mass spectro-
metry keep difficult to be removed from PGC surfaces.

Since the concentration of additives is usually low, no
purification procedures are necessary after the chroma-
tography step, making a coupling to MS straightforward,
even in negative ion mode (Ashwood et al., 2019). PGC
LC‐MS with negative ion polarity was used to analyze
enzymatically depolymerized GAGs, for example, HA,
HP, HS, and KS (Huang et al., 2011; Karlsson et al., 2005;
Wei et al., 2011, 2013). A similar approach was used to
analyze lyase‐digested CS from aggrecan after gel elec-
trophoresis (Estrella et al., 2007). A combination of PGC
and tandem MS was shown to be efficient in character-
izing disaccharide isomers including a position‐specific
determination of sulfate groups (Miller et al., 2016).

6 | ANALYSIS OF
GLYCOSAMINOGLYCANS WITH
MASS SPECTROMETRY

MS is a highly versatile method to determine the com-
position of disaccharides, the molecular weight of larger
oligosaccharides, the type of functional groups, and, to a
certain extent the GAG sequence. The acquisition of
sequence‐specific information is also possible with tra-
ditional gel electrophoresis and blotting techniques using
different reducing end and nonreducing end labeling
strategies (van Kuppevelt et al., 2017), albeit at the cost of
longer analysis time and a lower informational content
than MS. MS, especially in combination with LC (LC‐
MS), is therefore arguably the best currently available
tool for structural analysis of GAGs.

MS analysis is a crucial step in identifying positions of
functional groups on GAGs. A major issue is the unin-
tented loss of sulfate modifications (Zaia, 2004). In the
gas‐phase, sulfate groups are highly labile and readily
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lost in the form of neutral SO3 (McClellan et al., 2002).
The reaction is catalyzed by protons and therefore the
deprotonation of sulfate groups or adduct formation with
cations are efficient ways to prevent this undesired pro-
cess (Naggar et al., 2004; Shi et al., 2012). A study of
counter ions for ESI mass spectrometry analyzes of su-
crose octasulfate showed substantial fragmentation as a
result of sulfate loss. However, quaternary ammonium
and phosphonium salts can stabilize the sulfate groups
and yield excellent ESI spectra in the positive ion mode
(Gunay et al., 2003).

Sulfate loss not only complicates the interpretation of
mass spectra, but importantly it also leads to the loss of
essential information regarding the number and position
of sulfation. Therefore, it is crucial to employ gentle io-
nization techniques and source conditions to minimize
the activation of fragile GAG ions upon their transfer into
the gas‐phase (Leach et al., 2017). It is not suprising that
after the advent of ESI and matrix‐assisted laser deso-
rption ionization (MALDI), many different approaches
have been tested regarding their utility for GAG analysis
(Saad & Leary, 2003; Zaia, 2004, 2009; ZaZaia &
Costello, 2003, 2001). With careful and adapted optimi-
zation of instrument parameters, sulfated poly-
saccharides can be measured in negative ion mode and
also in positive ion mode under some conditions
(Lemmnitzer et al., 2021) without in‐source fragmenta-
tion of the sulfate moieties (Desaire & Leary, 2000;
Naggar et al., 2004). Isomeric Hep disaccharides could
also be determined by isotope labeling and ion trap
tandem mass spectrometry (Saad & Leary, 2004).

Another way to circumvent sulfate losses and achieve
identification of GAG isomers is the chemical derivati-
zation of sulfation sites. Here, synthetic HS tetra-
saccharides are first reduced by sodium borohydride and
then completely permethylated and desulfated (Huang
et al., 2016). The permethylation protects non‐sulfated
groups and can additionally help in the assignment of
sulfation sites. The original sites of sulfation are chemi-
cally derivatized with trideuteroacetyl groups. Conse-
quently, the derivatized tetrasaccharides are sufficiently
hydrophobic for retention on a C18 RPLC column and
can be analyzed by MS without undesired loss of sulfate
groups (Huang et al., 2016). A similar derivatization of
HS oligosaccharides with propionyl groups was also re-
ported (Liang et al., 2018). The synthetic approach re-
sulted in comparable derivatization efficiencies and
comparable sequencing results (Liang et al., 2018; Liu
et al., 2020). Another general approach to minimize
sulfate losses is the use of ion suppressors during LC‐MS
experiments. This removes cations from the mobile
phase thereby maximizing and stabilizing the charge of
the GAGs (Staples & Zaia, 2011).

7 | ION ACTIVATION METHODS
IN TANDEM MS

A large variety of ion activation methods are available to
generate fragments in tandem MS experiments. How-
ever, in the context of GAGs, only very few provide a
sufficiently diagnostic fragmentation pattern. The most
widely used techniques are collision‐induced dissociation
(CID) (Johnson & Carlson, 2015; Kailemia et al., 2012),
electron detachment dissociation (EDD) (Wolff,
Laremore, Aslam, et al., 2008) and negative electron
transfer dissociation (NETD) (Wolff et al., 2010). In-
formation on the composition and structure of the
polysaccharide can be derived from the fragmentation of
glycosidic bonds, whereas information from cross‐ring
cleavage is necessary to determine the position of sulfa-
tion at carbon‐2,3,4, and 6, as well as N‐sulfation and N‐
acetylation (Kailemia et al., 2015; Eugen et al., 2011).
Especially for the latter, an interpretation of the spectra is
often complicated and requires expert knowledge for
unambiguous assignments. Reproducible and automated
high‐throughput processes, which are supported by data
interpretation software, are particularly desirable (Chiu
et al., 2015, 2017; SaDamerell et al., 2012; Duan &
Amster, 2018; Hogan et al., 2018; Hong et al., 2017; Hu
et al., 2017; Ly et al., 2010; Maxwell et al., 2012; Saad &
Leary 2005), albeit challenging to achieve (Duan &
Amster, 2018; Hogan et al., 2018). The use of activation
methods is crucial for GAG analysis and their char-
acteristic features are described below.

7.1 | Collision induced dissociation

With CID experiments ions are accelerated by an electric
field against a neutral gas such as nitrogen or argon at
approximately 10−3 mbar, resulting in multiple collisions
of each ion with the buffer gas. Between each collision
event, there is sufficient time for internal vibrational
redistribution of the energy, which effectively leads to
slow heating of the ions and eventually cleavage of the
weakest covalent bonds. The generated fragments are
subsequently directed to the mass analyzer where their
m/z is measured. To reliably identify all structural details
and functional groups on a given precursor ion, the
presence of diagnostic fragments is required. Many
groups successfully applied CID for the sequencing of
GAGs (Guo & Reinhold, 2019; Huang et al., 2016;
Johnson & Carlson, 2015; Kailemia et al., 2012, 2013;
Liang et al., 2018; Naggar et al. 2004; Saad & Leary 2005;
Zaia et al., 2007) however, the informational content of
the fragment spectra strongly depends on the degree of
sulfation. Similar to source activation, sulfate loss is the
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predominant fragmentation outcome observed in CID.
This is particularly disadvantageous for the analysis of
highly sulfated GAGs in which sulfates are easily lost
even at low collisional activation (Jean‐Yves Salpin, 2017;
McClellan et al., 2002; Zaia & Costello, 2001). It was
demonstrated that sulfate losses can be reduced by de-
protonation of ‐OSO3H groups (Zaia & Costello 2003) or
through chemical derivatization using permethylation
(Huang et al., 2016). The exchange of H+ with metal
cations can also stabilize sulfate groups, which in turn
increases the informational content of the CID fragment
spectra (Medzihradszky et al., 2007; Shi et al., 2012).
Multiple consecutive CID fragmentation steps can be
used in sequential MS (MSn) experiments to obtain some
further structural information (Flangea et al., 2009; Gill
et al., 2013; Staples & Zaia, 2011).

Despite the disadvantageous fragmentation behaviour
with CID, it has been successfully used for GAG se-
quencing, for example, in the case of extracted bikunin
CS (Ly et al., 2011). Several isomers were identified based
on the intensity of different glycosidic bond fragments in
the CID MS/MS spectrum. Additionally, the relative
abundance of the detected B, X and Y ions enabled the
differentiation between CS and DS (Domon &
Costello, 1988; Mirgorodskaya et al., 2018). A significant
disadvantage of this method is that the ratio of specific
peak intensities is not a universal parameter and strongly
depends on the experimental conditions. The relative
peak intensities therefore have to be determined using
GAG standards before unknown structures can be
identified.

7.2 | Negative electron transfer
dissociation

Electron transfer dissociation (ETD) is a common tech-
nique for the fragmentation of peptides. ETD requires
highly charged ions and is therefore limited to ionization
by electrospray. With ETD the dissolved sample is first
ionized using ESI in positive ion polarity and precursor
ions formed in the gas‐phase are trapped in an ion trap.
Then, the precursor cations react with radical anions to
form an unstable cation radical. This unstable radical
dissociates into two fragments, typically c‐ and z‐type
ions. The cleavages occur randomly, depending on the
position in the sequence at which the radical is formed
(Leach et al., 2017; Wolff et al., 2010). For GAG analysis,
the most desired fragmentation approach is one in which
the dissociation of the precursor is accomplished at low
energy to minimize sulfate loss (Hu et al., 2017). The
technique that meets these requirements best is negative
electron transfer dissociation (NETD). In NETD the loss

of an electron from the analyte anion is caused by the
interaction with a reagent cation. Consequently, the
electron deficient anion radical undergoes internal re-
arrangement and dissociates into fragments (Lermyte
et al., 2018). While ETD is mainly used for the frag-
mentation of polycations (Brodbelt, 2016), NETD is pri-
marily suitable for polyanionic species such as highly
sulfated GAGs (Wu et al., 2018).

Tandem MS of GAGs using NETD was first carried
out using a linear quadrupole and ion trap instrument,
but the modest resolving power and low mass accuracy
limited the ability to identify highly charged structures
(Leach et al., 2017). In later approaches, NETD was ap-
plied to GAGs using fourier transform ion cyclotron re-
sonance mass spectrometry (FTICR) (Leach et al., 2011).
Additionally, NETD experiments have been applied in
distinguishing CS and DS providing low degrees of sul-
fate losses, high resolution and adaption to different in-
strument types (Leach et al., 2011; Wolff et al., 2010; Wu
et al., 2019). It generates structurally informative frag-
ments on sulfated HS oligosaccharides that facilitates the
assignment of 3‐O‐sulfation on synthetic HS isomers (Wu
et al., 2018).

7.3 | Other electron‐based
fragmentation methods

Another technique that is efficient in fragmenting mul-
tiply negatively charged ions like GAGs is electron de-
tachment dissociation (EDD) (Agyekum et al., 2015;
Leach et al., 2008; Oh et al., 2011; Wolff, Amster,
et al., 2007; Wolff, Chi, et al., 2007; Wolff, Laremore,
Busch, et al., 2008). EDD is based on the introduction of
low‐energy electrons to trapped gas‐phase ions. An
electron beam detaches an electron from a negatively
charged precursor ion, which causes the formation of
odd‐electron species. The release of potential energy
from the odd‐electron results in fragmentation and cross‐
ring cleavages of the precursor ion. This information
enables the characterization of posttranslational mod-
ifications and the primary sequence of proteins, peptides,
carbohydrates and oligo‐nucleotides (Adamson &
Håkansson, 2007; Anusiewicz et al., 2005). EDD has also
been shown to be highly valuable for studying GAGs—
being successfully applied for identifying sulfation on
GAG tetrasaccharides (Wolff, Amster, et al. 2007) and
decasaccharides (Kailemia et al., 2013). EDD also enables
the distinction between IdoA and GlcA present in tetra-
saccharides (Wolff, Chi, et al., 2007) and distinguishing
the CS/DS chains of bikunin (Chi et al., 2008). Ad-
ditionally, EDD fragmentation allowed the assignment of
C‐5 stereochemistry in 2‐O‐sulfated uronic acid epimers
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among ten synthetic HS tetrasaccharides (Agyekum
et al., 2015). Lastely, a combination of IM‐MS and EDD is
possible and was used to separate and identify isomeric
GAG gas‐phase ions (Kailemia et al., 2014).

The fragmentation of singly charged ions with elec-
tronic excitation from a high‐energy electron beam
(>20 eV) is referred to as electron‐induced dissociation
(EID) (Jones et al., 2015). EID generates fragments on
hexuronic acid residues with even‐ and odd‐electron
glycosidic and cross‐ring products. Fragmentation of
hexuronic acid residues by EID (and also EDD) are hy-
pothesised to occur because they exhibit labile behavior
under electronic excitation (Leach et al., 2012). Mass
spectra recorded from EID fragmentation are similar for
GlcA and IdoA in GAG epimers (Wolff, Laremore,
Aslam, et al., 2008).

Although fragment‐based analyses of GAGs is very
promising and has been applied successfully on several
occasions, it remains difficult to reliably identify isomers
in the molecule at different sulfate positions. Sulfates are
very labile, fragment easily and as a result it is unclear
whether the detected sugar fragments have already been
desulfated or whether they still carry sulfate groups.
Detected cross‐ring fragments in negative mode cannot
be distinguished from one another because they are
isomers. This makes it difficult to identify and determine
the position of sulfate groups. Ion mobility spectroscopy
(IMS) can fill this gap and delivers structure‐specific data
capable of differentiating isomers (Hofmann et al., 2015;
Miller et al., 2020). Additionally, structure‐ and
sequence‐specific information may in the future be ob-
tained from the UV photodissociation mass spectrometry
(Brodbelt et al., 2020) which showed promising first re-
sults and recently became commercially available.

8 | METHODS AND
APPLICATIONS OF
GLYCOSAMINOGLYCAN ANALYSIS

8.1 | Disaccharide analysis

The analysis of GAG disaccharides is one of the most
often used approaches for GAG characterization with
several methods having been reported over the years.
First, GAGs have to be effectively depolymerized to be
able to completely resolve their structures. Either bac-
terial polysaccharide lyase enzymes or deaminative
cleavage via nitrous acid are commonly used to generate
disaccharides from GAG chains (Ernst et al., 1995; Sun
et al., 2017). Many chromatography‐based methods are
generally applicable for disaccharide analysis and most of
them utilize MS detection (Gill et al., 2013; Staples &

Zaia, 2011), UV absorbance (Lu et al., 2010; Yang
et al., 2012) or fluorescence (Lu et al., 2010; Volpi
et al., 2014). The detection via fluorescence usually in-
creases the sensitivity of GAG disaccharide analysis in
comparison to UV detection (Yang et al., 2012). On the
chromatography side, RP chromatography, RP‐IP chro-
matography, SAX chromatography, PGC chromato-
graphy, and HILIC are the most common approaches in
disaccharide analysis.

Many GAG monosaccharide and disaccharide ana-
lyzes were performed using RP chromatography. After
derivatization with 1‐phenyl‐3‐methyl‐5‐pyrazolone
(PMP) unique disaccharides were detected and a dis-
crimination between Hep/HS, CS/DS, and HA was pos-
sible (Zhu et al., 2014). The separation and detection of
HS disaccharides within a single run of 18min was car-
ried out using a selected ion recording precolumn RP
derivatization with AMAC (Antia et al., 2017). The se-
paration efficiency can be further increased by the ad-
dition of ion‐pairing agents like tributylamine (Yang
et al., 2011), n‐pentylamine (Doneanu et al., 2009) or n‐
hexylamine (Solakyildirim et al., 2010). RP HPLC was
expanded by using tetrabutylammonium bisulfate as an
ion‐pairing reagent. With this approach disaccharides
and oligosaccharides were separated and quantified by
UV detection without additional derivatization (Galeotti
& Volpi, 2013). In recent years advanced MS technologies
have been introduced resulting in disaccharide profiles
that can be used as biomarkers in cancer diagnosis. For
example, a novel LC‐tandem MS approach utilizing di-
butylamine with RP chromatography was developed that
enabled the determination of previously unknown me-
thylation and sulfation patterns on the nonreducing ends
of CS/DS disaccharides from human breast carcinoma
(Persson et al. 2018). Further, a coupled SAX IM‐MS
approach using ammonium bicarbonate as eluent was
shown to be highly beneficial for the analysis of complex
Hep/HS di‐ and oligo‐saccharides. The use of ammonium
bicarbonate buffer for GAG elution improved the re-
solution through both weaker dissociation and con-
formational coordination of the ammonium across the
sulfate groups (Miller et al., 2016). Also, PGC chroma-
tography yielded promising results for GAG disaccharide
analysis (Karlsson et al., 2005). PGC‐MS combined with
gel electrophoresis and chemical release of digested GAG
fragments resulted in the determination of di‐ and hex-
asaccharides from CS (Estrella et al., 2007). The high‐
resolving power afforded by PGC also led to the high‐
sensitive detection of oligosaccharide isomers (Miller
et al., 2017).

In addition to SAX, PGC and RP applications, HILIC
chromatography in combination with MS is also profi-
cient in separating and detecting depolymerized GAGs. A

ANALYTICAL METHODS FOR GLYCOSAMINOGLYCAN ANALYSIS | 13



HILIC‐ESI‐Fourier transform‐MS platform was devel-
oped to characterize commercially available LMWHs (Li,
Zhang, et al., 2012). In this study the HILIC stationary
phase relied on a cross‐linked diol rather than amide
chemistry and provided highly resolved chromatographic
separation as well as stable and high efficiency ioniza-
tion. The use of organic solvents, low backpressure and
superior evaporation makes HILIC highly suitable for
LC‐MS. Rare disaccharide compositions of Hep, en-
oxaparin, and nadroparin have been successfully in-
vestigated using HILIC–quadrupole time‐of‐flight MS
(Ouyang et al., 2016). Additionally, a HILIC‐MS/MS
fragmentation technique for analysis of LMWHs pre-
pared by nitrous acid depolymerization was developed
(Sun et al., 2017). For the analysis of GAG disaccharides
derived from prostate cancer tissues, a weak anion ex-
change retention mechanism in combination with HILIC
was shown to be useful (Turiák et al., 2018).

MS detection, and partly fluorescence detection, have
been used for the quantitation of GAGs (Volpi
et al., 2014; Yu et al., 2019). A pure LC‐MS based quan-
tification of 23 sulfated disaccharides from porcine car-
tilage and ligament was performed using selected
reaction monitoring (Osago et al., 2014). In addition,
isotope reductive amination tags were used for the
quantitative analysis of Hep, LMWHs, and CS (Bowman
& Zaia, 2010; Lattová & Perreault, 2013; Mangrum
et al., 2017). Highly sulfated Hep isomers were also
quantified by IMS using NETD (Wei et al., 2019).

8.2 | Analysis of glycosaminoglycan
oligo‐ and polysaccharides

GAG sequencing is arguably fundamental to fully un-
derstand protein‐GAG interactions, in particular in the
context of developing new GAG therapeutics. Tradition-
ally, MS‐based analyzes of GAG oligo‐ and poly‐
saccharides have been carried out following bottom‐up
and top‐down approaches. In a bottom‐up approach,
GAGs are either chemically or enzymatically cleaved into
smaller chains before chromatographic separation and
MS analysis. Although bottom‐up approaches are widely
used and enable sensitive identification of di‐ and oligo‐
saccharides, the associated sample preparation is time‐
consuming, and therefore challenging to implement in
high‐throughput analyzes (Li et al., 2014a; Santos
et al., 2017). In top‐down approaches, intact GAG poly-
saccharides are analyzed and provide sequence in-
formation of the GAG chain without the need of
extensive sample preparation steps. However, high
sensitivity, selectivity, and high resolution are required
to get comprehensive results. Therefore, different MS

techniques are generally used for GAG characterization
in top‐down approaches (Robu et al. 2018). The most
significant limitation of these techniques remains sulfate
loss during fragmentation. However, this phenomenon
can be reduced by a combination of charge state mod-
ifications and metal ion adduction as the following ex-
amples of tandem MS approaches demonstrate.

Existing LC‐MS approaches were applied towards
small GAG chains like bikunin and LMWHs (Li, Ly,
et al., 2012). Broad charge distributions and sulfate losses
were found in experiments using LC‐MS in negative
mode with FTICR‐MS. A targeted complexation of the
sulfate groups with metal cations increases their stability
and maximizes fragmentation (i.e., MS/MS) of the ring
structures and glycosidic bonds (Chi et al., 2008). A
combination of top‐down and bottom‐up techniques has
proven to be the most sensible and promising approach,
for example, by carrying out soft depolymerization to
obtain long oligosaccharides or using capillary electro-
phoresis before MS analysis. Methods including both top‐
down and bottom‐up approaches have been established
by various research groups (Lin et al., 2017; Liu
et al., 2017a, 2017b).

A comprehensive di‐ and oligo‐saccharide analysis
allows the quantification and profiling of GAG mole-
cules, but a detailed structure determination remains
challenging. Therefore, sequential chemical derivatiza-
tion strategies, including permethylation, desulfation,
and trideuteroperacetylation were applied (Huang
et al., 2013, 2016; Liang et al., 2018). Derivatization at the
original sulfation sites prevented information loss due to
sulfate group loss and enabled discrimination between
HS oligosaccharide sequences by glycosidic bond clea-
vages. Subsequently, derivatization techniques were
combined with LC‐MS/MS and resulted in a complete
sequence determination of five synthetic GAG oligo-
saccharides (Huang et al., 2013).

In another tandem MS approach, the complete
structural analysis of highly sulfated Hep and HS oligo-
saccharides was reported. Stabilisation of sulfate groups
was achieved through the use of ion suppressors (Staples
& Zaia, 2011) and complete deprotonation by Na+/H+

exchange or charging during the ESI process (Kailemia
et al., 2013). The generation of deprotonated precursor
ions was strongly facilitated by the addition of sodium
hydroxide. This approach worked for several biological‐
and synthetic HS oligosaccharides with up to 12 sac-
charide subunits and up to 11 sulfate groups.

Within the last twenty years, approaches based on
FTICR‐MS have been applied, providing detailed struc-
tural information of GAG sequences (Laremore
et al., 2010). At the MS1 level, a mass accuracy of 1 ppm
was achieved (Russell et al., 2002). FTICR‐MS
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measurements have allowed the assignment of compo-
sition, the determination of chain length, and the num-
ber, and type of modifications. The number of
saccharides and the sulfation degree of GAGs from bi-
kunin were investigated using FTICR‐MS, which was the
first complete sequencing of bikunin GAG chains (Chi
et al., 2008).

Recently, the sequence motifs of DS chains from
decorin and depolymerized CS and DS fragments with
different sulfation patterns were investigated using a
combination of SEC, SAX, gel electrophoresis, and tan-
dem MS (Yu et al., 2017). In addition, the sequence of an
N‐unsubstituted Hep/HS hexasaccharide was success-
fully determined. The sequencing approach included
depolymerization of GAG chains by deaminative de-
gradation, SEC and RP‐IP LC‐MS (Liang et al., 2015).

9 | ION MOBILITY ‐MASS
SPECTROMETRY

MS is a great tool for biomolecule analysis, however
isomer seperation remains an analytical challenge. One
way to resolve this challenge is to fragment the species of
interest using CID (Harvey, 2000; Harvey et al., 1997) or
ETD (Han & Costello, 2011). Another strategy involves

derivatization, for example, permethylation, followed by
MSn fragmentation in ion‐trap instruments (Ashline
et al., 2005; Huang et al., 2016; Liang et al., 2018; Sheeley
& Reinhold, 1998; Viseux et al., 1998; Weiskopf
et al., 1998). All these strategies have their advantages
and disadvantages, but what all have in common is that
their application is time‐consuming and the data inter-
pretation is complex. Therefore, it would be desirable to
add an additional dimension to the commonly applied
MS or LC‐MS approaches to separate isomers without
further structural modifications. IMS fulfills this re-
quirement by providing an additional dimension of bio-
molecular separation and therefore structural
information (Bohrer et al., 2008; Hofmann & Pagel, 2017;
Kanu et al., 2008; Lapthorn et al., 2013). IMS involves
separation of biomolecules by their charge, size, and
shape. The analyte ions are guided by a weak electric
field through a cell filled with inert neutral gas (He, N2).
Compact ions collide less frequently with the inert gas
than larger ions and can traverse the cell faster (Figure 4)
(Gabelica & Marklund, 2018; Hoffmann et al., 2017).

Over the last years, several IMS systems have become
commercially available. They differ significantly in the
type of electric field, duty cycle and the achieved IMS
resolution. The first commercial instrument was the
Waters Synapt HDMS (Waters MS‐Technologies) which
uses the traveling‐wave ion mobility spectrometry
(TWIMS) technique (Harvey et al., 2015). TWIMS in-
struments consist of a stacked‐ring ion guide on to which
a travelling voltage pulse is applied to propel the ions
through the gas‐filled IMS cell (Cumeras et al., 2015;
Giles, 2013; Giles et al., 2010; Hoffmann et al., 2014). In
the following years, other manufacturers followed with
their own IMS instruments. The Agilent 6560 IM‐TOF
LC/MS (Agilent) instrument uses the drift tube ion mo-
bility spectrometry (DTIMS), a traditional IMS technique
that has been previoulsy used in home‐built IMS in-
struments. In DTIMS a uniform electric field along the
axis of the drift tube is used to transport the ions through
the IMS cell (Cumeras et al., 2015). Another well estab-
lished technique is the field asymmetric waveform ion
mobility spectrometry (FAIMS) which has been com-
mercialized by various companies, for example, in the
FAIMSPro Interface by Thermo Fisher (Thermo Fisher
Scientifc). The general working principle of FAIMS is
based on a strong asymmetric oscillating electric field
(Hale et al., 2020). This provides exceptionally high re-
solution, albeit at the drawback that the mobility beha-
viour is difficult to predict and that ions might be
unintentially activated—a problem of particular re-
levance in GAG analysis. Finally, Bruker Daltonics
(Bremen, D) introduced several generations of TIMS‐
TOF instruments, which use rapped ion mobility

FIGURE 4 Principle of IMS. Ions are separated according to
their size, shape, and charge. Gas‐phase ions are guided by an
electric field and collide with drift gas ions in the cell. Larger ions
(blue) experience more collisions with the gas and have longer drift
times compared to smaller (green) ions. IMS, ion mobility
spectrometry [Color figure can be viewed at
wileyonlinelibrary.com]
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spectrometry (TIMS) technology. In TIMS ions are trap-
ped and held stationary in a moving stream of gas until
they are released from the TIMS analyzer according to
their mobility (Michelmann et al., 2015; Ridgeway
et al., 2018).

Except in FAIMS, the measured parameter in all IMS
techniques is the drift time of the particular analyte ions.
The drift time is an instrument‐dependent value that is
affected by multiple parameters such as IM gas pressure,
temperature, and most importantly, the applied electric
field. In many cases drift times can be converted into
mobilites, which can subsequently be used to determine
an instrument independent value—the rotational‐
averaged collision‐cross section (CCS) (Dziekonski
et al., 2018; Gabelica & Marklund, 2018; Pagel &
Harvey, 2013). CCSs are inherrent molecular properties
that relate to the average area of the molecule colliding
with the drift gas and can therefore be used for structural
classification. Analagous to e glucose units (GU) gener-
ated by dextran calibration in HILIC chromatography of
glycans (Gautam et al., 2020), IMS‐derived CCS values
have the potential to be implemented as an additional
search parameter for database analyzes of complex car-
bohydrates (Struwe et al., 2016).

The potential of IMS for the analysis of complex
glycan mixtures is remarkable. IMS can be interfaced to
different mass spectrometry platforms offering multi-
dimensional separation (Delvaux et al., 2021), while re-
taining the major advantages of classical MS such as low
sample consumption and short analysis time. Therefore,
it is not surprising that IMS was previously applied
succcesfully to separate and distinguish glycan isomers.
For example, it was shown that synthetic oligosaccharide
isomers can be successfully separated using TWIMS,
despite only minor differences in their regio‐ and stereo‐
chemistry at a singly glycosidic bond (Hofmann
et al., 2015). Furthermore, it was demonstrated that
fragment‐based approaches can identify fucosylated
(Sastre Toraño et al., 2019) and sialylated linkages
(Hofmann & Pagel, 2017; Hofmann et al., 2017; Lane
et al., 2019) which can be used to determine character-
istic features on milk oligosaccharides and complex N‐
glycans (Harvey et al., 2018b; Pagel & Harvey, 2013). The
combination of mass measurement and IM‐MS analysis
also enabled the assignment and identification of iso-
meric glycopeptides and separation into different charge
states (Creese & Cooper, 2012; Zhu et al., 2015). IM‐MS
can also be used to characterize O‐glycan standards with
subtle structural differences illustrating its potential in
biological and structural studies (Zheng et al., 2016).

As illustrated by the few aformentioned examples,
IMS has been extensively applied towards analysis of
isomeric glycan mixtures (Harvey & Struwe, 2018;

Harvey et al., 2018a; Jin et al., 2019). In contrast to N‐
glycans and small synthetic oligosaccharides, GAGs are
much more challenging. Aside from from their vast
structural complexity and polydispersity, the biggest ob-
stacle is their highly labile nature as discussed above.
Despite these challenging requirements, various combi-
nations of IMS techniques and electron‐based dissocia-
tion methods were used to characterize complex GAG
mixtures. Six synthetically produced Hep/HS‐like octa-
saccharide isomers were analyzed by TWIMS‐MS and
tandem mass spectrometry (Miller et al., 2015). The oc-
tasaccharides were isomeric with regard to GlcA or IdoA
positioning. Using IM‐MS, it was shown that structures
including GlcA exhibited a more compact formation,
whereas IdoA‐containing oligosaccharides were more
extended. Additionally, it was observed that the change
from IdoA to GlcA in specific locations resulted in con-
formational distortions, which were also reflected by
different spectra with unique sets of diagnostic fragment
ions. Interestingly, a correlation was found between the
formation of glycosidic product ions under low energy
conditions and the GlcA group containing isomers. Ul-
tilising the same collision energy for octasaccharide iso-
mers containing IdoA and GlcA, the GlcA‐isomers
resulted in a higher ion intensity. The specific behaviour
of GlcA groups enabled the complete sequencing of GlcA
and IdoA positions in each of the four positions located
in each octasaccharide structure (Miller et al., 2015).

These experiments revealed that small changes, pre-
sent within large biopolymers can have a major impact
on the structure, which in turn influences GAG function.
It is therefore crucial to identify all strcutral details in
bioactive GAGs. A first step in this direction was the
recent emergence of “Shotgun” IM‐MS Sequencing
(SIMMS2) (Miller et al., 2020). Here, HS oligosaccharides
were fragmented in the IM‐MS instrument and CCS va-
lues were determined for each fragment. Subsequently,
the acquired data was matched against known values for
36 fully defined HS oligosaccharides up to decasacchar-
ides. This database comparison permitted a precise se-
quence determination of validated standards and
unknown, natural occurring GAG species including
variants with rare but biologically relevant 3O‐sulfate
groups. This approach also allowed to elucidate
structure–activity relationships by identifying two fibro-
blast growth factor inhibiting hexasaccharide structures
from a HS oligosaccharide library screening (Miller
et al., 2020).

Another study used IM‐MS to identify conforma-
tional changes that occur in fully sulfated Hep octa-
saccharides after the successive addition of metal ions
(Seo et al., 2011). Various metal ions induced con-
formational changes in Hep oligosaccharide structures.
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Consequently, the interaction of Hep and Hep‐binding
proteins was altered and can result in a multitude of
different biological functions (Kjellén & Lindahl, 2018;
Peysselon & Ricard‐Blum, 2014; Weiss et al., 2017).

Also, other IMS and IMS‐based techniques have been
successfully applied for GAG analysis. For example,
FAIMS was combined with FTICR‐MS and used to sepa-
rate isomeric and isobaric GAG oligosaccharides before
EDD fragmentation (Kailemia et al., 2014). Additionally,
TIMS technology enables high resolution and high ion
transmission, which showed great promise for separating
GAG isomers (Wei et al., 2019). TIMS‐NETD‐MS/MS, has
already been successfully used to characterize highly sul-
fated HP and HS oligosaccharides without loss of sulfate
groups (Wei et al., 2019). Positional isomers can be de-
termined by prior calibration with synthetic tetra‐ and
hexa‐saccharide standards, including sulfation positional
isomers. In addition to direct GAG analyzes, IMS is often
used in combination with native MS and CID to investigate
protein GAG interactions (Zhao et al., 2015, 2017). Opti-
mising IMS and MS parmaters is critical as even the
smallest changes can significantly impact separation or ion
stability (Song et al., 2020).

Despite the outstanding potential of IMS, not all
isomers can be easily resolved and it is also not
straightforward to predict the success (or failure) of a
particular gas‐phase separation. A comprehensive ana-
lysis of GAG oligosaccharides including all structural
features usually requires the combination of several or-
thogonal techniques.

10 | NOVEL DEVELOPMENTS IN
GAS ‐PHASE ION SPECTROSCOPY

Infrared (IR) ion spectroscopy is a powerful tool for the
identification of functional groups in biomolecules.
Classical IR spectroscopy measures the attenuation of the
incident light and is broadly applied for the analysis of
solutions and solids. On the other hand, performing si-
milar absorption spectroscopy experiments on gas‐phase
ions is typically not possible. The concentration at which
ions can be trapped in a mass spectrometer is determined
by the space‐charge limit and is usually several orders of
magnitude below what would be required for classical
spectroscopy. To circumvent this problem, action spec-
troscopy techniques are used. As the name implies, it
measures an action, a response of molecules to resonant
absorption of photons at a specific wavelength. The
monitored action can range from the fragmentation of
covalent bonds, to changes in electronic transitions or the
dissociation of a weakly associated molecular tag
(Oomens et al., 2006).

Infrared multiple photon dissociation (IRMPD)
spectroscopy is a type of IR action spectroscopy in which
the action is the dissociation or fragmentation after se-
quential absorption of multiple photons. After absorption
of each individual photon, the photon energy is dis-
tributed throughout the molecule via intramolecular vi-
brational redistribution (IVR). As a result, the internal
energy of the ion increases gradually, leading to hot ions
which eventually dissociate into smaller fragments.
Monitoring the fragmentation yield as a function of the
wavelength using monochromatic light leads to an IR
spectrum (Cismesia et al., 2018; Seo et al., 2017). Over the
last years, tunable benchtop laser systems became readily
available and IRMPD spectroscopy was applied to study
of a broad rang of biomolecules in the gas‐phase, in-
cluding GAGs (Song et al., 2020). For example, GlcNAc3S
and GlcNAc6S were studied by IRMPD spectroscopy and
characteristic spectroscopic patterns for sulfation were
identified through comparison to reference standards
(Schindler et al., 2017). Furthermore, it was found that
individual hexuronic acid epimers in HA tetra-
saccharides can be distinguished from their unique gas‐
phase IR fingerprints. Similarly diagnostic vibrational
spectra were reported for GalNAc4S and GalNAc6S
(Renois‐Predelus et al., 2018).

Despite its straightforward instrumentation and
broad applicability, IRMPD spectroscopy suffers from
peak broadening and red shifting of bands arising from
the thermal activation of ions during multiple photon
absorption (Oomens et al., 2006). Additionally, the con-
formational flexibility of larger oligosaccharides may lead
to several coexisting conformers at room temperature,
which absorb at different wavelengths. The resulting
spectra are therefore usually broad and congested, which
limits the application of IRMPD spectroscopy to smaller
mono‐ and disaccharides (Mucha et al., 2019).

A technique to overcome the limitations of spectral
congestion is cryogenic gas‐phase IR spectroscopy. Here
the conformational flexibility of ions is suppressed by
cooling of the ions to ultracold temperatures. Further
spectral broadening is prevented either using single‐
photonic activation or by cooling of the ions during the
irradiation with multiple photons. The resulting con-
sequences for spectral quality can be significant.

A highly powerful, but also technically elaborate
technique in cryogenic gas‐phase IR spectroscopy is
based on the encapsulation of analyte ions in superfulidic
helium nanodroplets (González Flórez et al., 2016). Here,
ions are generated by nano ESI, selected according their
m/z values in a quadrupole and acculumated in a cryo-
genic ion trap with a temperature of 90 K. Subsequently,
ions are picked up by traversing superfluid helium na-
nodroplets and cooled down to their equilibrium

ANALYTICAL METHODS FOR GLYCOSAMINOGLYCAN ANALYSIS | 17



temperature at 0.4 K. The ions, embedded in helium
nanodroplets, are then irradiated by IR photons from a
tunable, narrow‐bandwidth laser. Upon resonant ab-
sorption the ions are released from the nanodroplets and
can be detected via time‐of‐flight analysis (Figure 5).

This technique was applied for characterizing a set of
six synthetic trisaccharide isomers that only differed in
the composition, connectivity or configuration at one
particular glycosidic bond (Mucha et al., 2017). The ob-
tained spectra were highly resolved with vibrational
bands being only a few wavenumbers wide and diag-
nostic to minute structural details. This enabled the
straightforward differentiation of all possible types of
isomerism in glycans. Using the same technique, IR
signatures of characteristic fragment ions were recorded
and revealed structural details of gas‐phase fucose mi-
gration in fucosylated glycans (Mucha et al., 2018). Fur-
ther studies studies highlighted the unique role of a
mobile proton in this migration process (Lettow
et al., 2019). IR spectroscopy in helium nanodroplets was
also successfully used to study GAG oligosaccharides up
to pentasaccharides. Vibrational bands specific for sulfate
groups were found to in a spectral range in which no
other diagnostic vibrations occur (Lettow et al., 2020b).
In a further study, HS tetrasaccharide diastereomers
were analyzed and revealed a strong spectra‐structure
correlation arising from specific intramolecular ion in-
teractions (Lettow et al., 2020a).

Other, more widely used techniques for cold‐ion spec-
troscopy are based on cooling of the ions in cold‐ion traps.
To record an IR spectrum, these experiments typically
monitor the dissociation of weakly bound, noninteracting,
messenger tags upon irradiation with a tunable benchtop
laser (Khanal et al., 2017; Roithová et al., 2016; Voronina
et al., 2016). Messenger tags, for example, atoms or small
molecules (N2, H2), form weakly bound ionic complexes
with the analytes and result in a lower dissociation threshold
of the system. The absolute temperature in these experi-
ments is with 10–70K, considerably higher than the sub‐
kelvin temperature in helium nanodroplets. However, the
spectral quality and with that the diagnostic potential is al-
most identical. Using this technique it was, for example,
possible to distinguish five singly sulfated GAG disaccharide
isomers based on their unique vibrational fingerprints
(Khanal et al., 2017).

11 | OUTLOOK

GAGs are a physiologically and pharmacologically relevant
class of complex carbohydrates that are fundamental for a
range of cellular processes. Their complex sulfation patterns
and epimerization variants make their structural analysis
exceedingly complex, especially compared to other glyco-
conjugates. Consequently, GAG sequencing requires the
most sophisticated methods, both preparative and analytical,

FIGURE 5 Schematic diagram of an IR‐
MS instrument. Fragment ions are
accumulated in an ion trap and their mass‐
to‐charge ratio is measured via time‐of‐flight
analysis. Helium droplets pick up trapped
ions, which are immediately cooled to 0.37 K.
Subsequently, the droplets are irradiated
with monochromatic, high‐intensity IR
radiation, for example, using a FEL. FEL,
free‐electron laser [Color figure can be
viewed at wileyonlinelibrary.com]
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to generate information‐rich structural information. Sui-
table preparative steps are essential to achieve sufficient
purity and concentration for a given analysis. Applied
chromatographic techniques will continue to evolve and
yet existing approaches, such as HILIC, SAX, and RP‐IP
chromatography, are poweful but also require specific
adaptations and modifications to purify complex GAG
mixtures. However, stand‐alone chromatographic meth-
ods require large amounts of samples and involve either
UV chromophores or fluorescence tags for detection. In
addition, optimized depolymerization processes are ne-
cessary to generate a reproducible, average distribution of
GAG oligosaccharides.

Chromatography coupled to mass spectrometry will
likley remain the workhorse for GAG sequencing and
novel dissociation methods, namely those that are
electron‐based, will propel the field. Similarly, IMS
technology offers exceptionally high benefits and diverse
possibilities, especially for the separation of isomers and
the differentiation of analytes in general. Furthermore,
emerging IR spectroscopy techniques, and in particular
those working at cryogenic temperatures, enable an in-
creased resolving power and nearly limitless possibilities
to differentiate isomers and their fragments. Currently,
gas‐phase spectroscopy techniques require specialized
light sources and sophisticated intstrumentation, which
limits their application to a few labs worldwide. How-
ever, the development of user‐friendly instruments and
tunable benchtop laser systems is progressing rapidly.
Gas‐phase spectroscopy technology might therefore find
a way into broader application in the future.

ACRONYMS
AMAC 2‐Aminoacridon
CCS collisional cross section
CID collision induced dissociation
CS chondroitin sulfate
CSPGs chondroitin sulfate proteoglycans
CTA cetyl‐trimethyl‐ammonia
DS dermatan sulfate
DSPGs dermatan sulfate proteoglycans
DTIMS drift tube ion mobility spectrometry
ECD electron capture dissociation
ECM extracellular matrix
EDD electron detachment dissociation
EID electron induced dissociation
ESI electrospray ionization
ETD electron transfer dissociation
FAIMS High‐field asymmetric‐waveform ion‐

mobility spectrometry
FTICR‐MS fourier transform ion cyclotron resonance

mass spectrometry

GaGs glycosaminoglycans
Gal galactose
GalNAc N‐acetylgalactosamine
Glc glucose
GlcA glucuronic acid
GlcN glucosamine
GlcNAc N‐acetylglucosamine
HA hyaluronic acid
Hep heparin
HILIC hydrophilic interaction chromatography
HS heparansulfate
IdoA iduronic acid
IMS ion mobility spectrometry
IM‐MS ion mobility mass spectrometry
IR infrared
IRMPD infrared multiple photon dissociation
KS keratan sulfate
KSPGs keratan sulfate proteoglycans
LC‐MS liquid chromatography mass spectrometry
LMWHs low molecular weight heparins
MALDI matrix assisted laser desorption ionization
Man mannose
MS mass spectrometry
NEDD negative electron detachment dissociation
NETD negative electron transfer dissociation
PGC porous graphitic chromatography
PGs proteoglycans
Proc procainamide
RP‐IP reversed‐phase ion pairing
SAX strong anion exchange
SEC size exclusion chromatography
SRM selected reaction monitoring
TIMS trapped ion mobility spectrometry
TWIMS traveling wave ion mobility spectrometry
UA uronic acid
Xyl xylose
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